
Checking Laws of the Blockchain with Property-Based
Testing

Alexander Chepurnoy1, Mayank Rathee2

1Ergo Platform and IOHK Research
Sestroretsk, Russia

2Department of Computer Science and Engineering
Indian Institute of Technology (Banaras Hindu University)

Varanasi, India

March 20 @ IWBOSE’18

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 1 / 24



Introduction Motivation and contribution

Motivation behind our work

Cryptocurrencies have been gaining popularity in the recent times.

It is now, more than ever, crucial that errors in client implementations
of cryptocurrencies are detected and corrected.

Bugs in reference client implementations can even propagate into
alternate implementations. (Which are using the reference
implementation as the definition of the protocols)

There have been times when the famous Bitcoin network got affected
by these bugs.

The revelation of these bugs will only become more common with
increasing demand and usage.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 2 / 24



Introduction Motivation and contribution

Motivation behind our work

Cryptocurrencies have been gaining popularity in the recent times.

It is now, more than ever, crucial that errors in client implementations
of cryptocurrencies are detected and corrected.

Bugs in reference client implementations can even propagate into
alternate implementations. (Which are using the reference
implementation as the definition of the protocols)

There have been times when the famous Bitcoin network got affected
by these bugs.

The revelation of these bugs will only become more common with
increasing demand and usage.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 2 / 24



Introduction Motivation and contribution

Motivation behind our work

Cryptocurrencies have been gaining popularity in the recent times.

It is now, more than ever, crucial that errors in client implementations
of cryptocurrencies are detected and corrected.

Bugs in reference client implementations can even propagate into
alternate implementations. (Which are using the reference
implementation as the definition of the protocols)

There have been times when the famous Bitcoin network got affected
by these bugs.

The revelation of these bugs will only become more common with
increasing demand and usage.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 2 / 24



Introduction Motivation and contribution

Our contribution

A suite of generic property-tests designed to check if a blockchain
client implementation is sane.

Formally describing some essential properties which should be
satisfied by any cryptocurrency and blockchain client implementation.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 3 / 24



Software Testing Conventional Testing

Software testing

Conventionally, software testing requires writing some specific tests
based on some examples.

Many bugs usually propagate through testing if the developer of code
himself tries to write the tests.

If someone else tries to write the tests then they can miss some
behavioural aspects of the program.

A test writer might take some assumptions regarding how the input is
being processed by the function under testing, if he considers it as a
black-box.

What happens to the tests which are heavily coupled with code of the
program (which they test) when the program code changes?

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 4 / 24



Software Testing Conventional Testing

Software testing

Conventionally, software testing requires writing some specific tests
based on some examples.

Many bugs usually propagate through testing if the developer of code
himself tries to write the tests.

If someone else tries to write the tests then they can miss some
behavioural aspects of the program.

A test writer might take some assumptions regarding how the input is
being processed by the function under testing, if he considers it as a
black-box.

What happens to the tests which are heavily coupled with code of the
program (which they test) when the program code changes?

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 4 / 24



Software Testing Conventional Testing

Software testing

Conventionally, software testing requires writing some specific tests
based on some examples.

Many bugs usually propagate through testing if the developer of code
himself tries to write the tests.

If someone else tries to write the tests then they can miss some
behavioural aspects of the program.

A test writer might take some assumptions regarding how the input is
being processed by the function under testing, if he considers it as a
black-box.

What happens to the tests which are heavily coupled with code of the
program (which they test) when the program code changes?

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 4 / 24



Software Testing Conventional Testing

Software testing

Conventionally, software testing requires writing some specific tests
based on some examples.

Many bugs usually propagate through testing if the developer of code
himself tries to write the tests.

If someone else tries to write the tests then they can miss some
behavioural aspects of the program.

A test writer might take some assumptions regarding how the input is
being processed by the function under testing, if he considers it as a
black-box.

What happens to the tests which are heavily coupled with code of the
program (which they test) when the program code changes?

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 4 / 24



Software Testing Conventional Testing

Software testing

Conventionally, software testing requires writing some specific tests
based on some examples.

Many bugs usually propagate through testing if the developer of code
himself tries to write the tests.

If someone else tries to write the tests then they can miss some
behavioural aspects of the program.

A test writer might take some assumptions regarding how the input is
being processed by the function under testing, if he considers it as a
black-box.

What happens to the tests which are heavily coupled with code of the
program (which they test) when the program code changes?

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 4 / 24



Software Testing Property-based Testing

Property-based testing

More promising - model testing in a way that captures the idea of
”how the program is intended to behave rather than how you think it
might behave”.

Property

Consider a predicate P : I→ Boolean
If ∀X ∈ D ⊂ I we have that P(X ) = true.
Then we say that predicate P defines a property over D.

In Property-based testing, properties are defined which should hold
valid based on the intended behaviour of the program/module under
testing.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 5 / 24



Software Testing Property-based Testing

Property-based testing

More promising - model testing in a way that captures the idea of
”how the program is intended to behave rather than how you think it
might behave”.

Property

Consider a predicate P : I→ Boolean
If ∀X ∈ D ⊂ I we have that P(X ) = true.
Then we say that predicate P defines a property over D.

In Property-based testing, properties are defined which should hold
valid based on the intended behaviour of the program/module under
testing.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 5 / 24



Software Testing Property-based Testing

Property-based testing II

What happens during property-based testing?

During testing, the runner tries to find examples which falsify the
specified properties.
If such a counter-example is found, then simpler versions, similar to
those of the counter-example, which also falsify the predicate are
searched and reported.

Example

For a program which works only for inputs in N, if the runner finds that ”-5”
falsifies the predicate, it can try a simpler example with similar arguments (like
being in Z−) and can hence report that ”-1” also falsifies.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 6 / 24



Software Testing Property-based Testing

Property-based testing II

What happens during property-based testing?

During testing, the runner tries to find examples which falsify the
specified properties.
If such a counter-example is found, then simpler versions, similar to
those of the counter-example, which also falsify the predicate are
searched and reported.

Example

For a program which works only for inputs in N, if the runner finds that ”-5”
falsifies the predicate, it can try a simpler example with similar arguments (like
being in Z−) and can hence report that ”-1” also falsifies.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 6 / 24



Software Testing Property-based Testing

Property-based testing III

Since property-based testing treats the program code as a black-box,
it does not suffer from coupling issues when the program code is
modified.

It is very convenient way of automating the task of testing. We just
need to write the properties once and for all.

With just a few lines of code, an extensive testing of software can be
performed.

Checking race conditions with property-based testing is way easier
than writing tests explicitly.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 7 / 24



Software Testing Property-based Testing

Property-based testing III

Since property-based testing treats the program code as a black-box,
it does not suffer from coupling issues when the program code is
modified.

It is very convenient way of automating the task of testing. We just
need to write the properties once and for all.

With just a few lines of code, an extensive testing of software can be
performed.

Checking race conditions with property-based testing is way easier
than writing tests explicitly.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 7 / 24



Software Testing Property-based Testing

Property-based testing III

Since property-based testing treats the program code as a black-box,
it does not suffer from coupling issues when the program code is
modified.

It is very convenient way of automating the task of testing. We just
need to write the properties once and for all.

With just a few lines of code, an extensive testing of software can be
performed.

Checking race conditions with property-based testing is way easier
than writing tests explicitly.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 7 / 24



Software Testing Property-based Testing

Popular libraries for property-based testing

QuickCheck for Haskell-based programs.

ScalaCheck for Scala-based programs, inspired by QuickCheck. We
used ScalaCheck to build our test suite.

ScalaTest for Scala-based programs.

JUnit-QuickCheck for Java programs.

theft of C programs.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 8 / 24



Software Testing Property-based Testing

A case study of Erlang QuickCheck

Erlang Factory, in March’16, reported that they tested project FIFO,
which is an open-source Cloud Management system, against some
properties written with Erlang QuickCheck.

Project FIFO has 60,000 lines of code which was accompanied by just
460 lines of QuickCheck code.

25 errors spanning timing errors, race conditions, type errors, logical
errors, fault handling and even a hardware error among other
software errors were found.

It is trivial to see that any decent test suite would have more lines of
code compared to 460 lines here and would still report less errors than
QuickCheck.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 9 / 24



Software Testing Property-based Testing

A case study of Erlang QuickCheck

Erlang Factory, in March’16, reported that they tested project FIFO,
which is an open-source Cloud Management system, against some
properties written with Erlang QuickCheck.

Project FIFO has 60,000 lines of code which was accompanied by just
460 lines of QuickCheck code.

25 errors spanning timing errors, race conditions, type errors, logical
errors, fault handling and even a hardware error among other
software errors were found.

It is trivial to see that any decent test suite would have more lines of
code compared to 460 lines here and would still report less errors than
QuickCheck.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 9 / 24



Software Testing Property-based Testing

A case study of Erlang QuickCheck

Erlang Factory, in March’16, reported that they tested project FIFO,
which is an open-source Cloud Management system, against some
properties written with Erlang QuickCheck.

Project FIFO has 60,000 lines of code which was accompanied by just
460 lines of QuickCheck code.

25 errors spanning timing errors, race conditions, type errors, logical
errors, fault handling and even a hardware error among other
software errors were found.

It is trivial to see that any decent test suite would have more lines of
code compared to 460 lines here and would still report less errors than
QuickCheck.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 9 / 24



Software Testing Property-based Testing

A case study of Erlang QuickCheck

Erlang Factory, in March’16, reported that they tested project FIFO,
which is an open-source Cloud Management system, against some
properties written with Erlang QuickCheck.

Project FIFO has 60,000 lines of code which was accompanied by just
460 lines of QuickCheck code.

25 errors spanning timing errors, race conditions, type errors, logical
errors, fault handling and even a hardware error among other
software errors were found.

It is trivial to see that any decent test suite would have more lines of
code compared to 460 lines here and would still report less errors than
QuickCheck.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 9 / 24



Software Testing Property-based Testing

Property-based testing of generic systems

Property-based testing for programs built over generic frameworks is
even advantageous.

Some generic frameworks can provide already implemented properties
which should be satisfied by every application build on top of them.

Generator

Routine which returns a sequence of values, one at a time, such that the
caller can use them to generate data points from a non-primitive or
user-defined data type

To check an application for sanity, the developer just needs to write
generators to generate random data points.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 10 / 24



Software Testing Property-based Testing

Property-based testing of generic systems

Property-based testing for programs built over generic frameworks is
even advantageous.

Some generic frameworks can provide already implemented properties
which should be satisfied by every application build on top of them.

Generator

Routine which returns a sequence of values, one at a time, such that the
caller can use them to generate data points from a non-primitive or
user-defined data type

To check an application for sanity, the developer just needs to write
generators to generate random data points.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 10 / 24



Software Testing Property-based Testing

Property-based testing of generic systems

Property-based testing for programs built over generic frameworks is
even advantageous.

Some generic frameworks can provide already implemented properties
which should be satisfied by every application build on top of them.

Generator

Routine which returns a sequence of values, one at a time, such that the
caller can use them to generate data points from a non-primitive or
user-defined data type

To check an application for sanity, the developer just needs to write
generators to generate random data points.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 10 / 24



Software Testing Property-based Testing

Property-based testing of Blockchain systems I

Blockchain systems built on top of a generic framework called Scorex
can also gain from this. We have deployed our tests over
TwinsCoin cryptocurrency which is built over Scorex.

Building a generic testing suite specifically for just one cryptocurrency
beats the whole purpose of the testing suite being ”generic”.

A lot of modular and open-source cryptocurrency frameworks have
been proposed, with their only purpose - speeding up the
development time it usually takes to build a new blockchain
system.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 11 / 24



Software Testing Property-based Testing

Property-based testing of Blockchain systems I

Blockchain systems built on top of a generic framework called Scorex
can also gain from this. We have deployed our tests over
TwinsCoin cryptocurrency which is built over Scorex.

Building a generic testing suite specifically for just one cryptocurrency
beats the whole purpose of the testing suite being ”generic”.

A lot of modular and open-source cryptocurrency frameworks have
been proposed, with their only purpose - speeding up the
development time it usually takes to build a new blockchain
system.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 11 / 24



Software Testing Property-based Testing

Property-based testing of Blockchain systems I

Blockchain systems built on top of a generic framework called Scorex
can also gain from this. We have deployed our tests over
TwinsCoin cryptocurrency which is built over Scorex.

Building a generic testing suite specifically for just one cryptocurrency
beats the whole purpose of the testing suite being ”generic”.

A lot of modular and open-source cryptocurrency frameworks have
been proposed, with their only purpose - speeding up the
development time it usually takes to build a new blockchain
system.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 11 / 24



Software Testing Property-based Testing

Property-based testing of Blockchain systems II

We have chosen Scorex framework by IOHK, which promises a more
intuitive partitioning between the different component protocols like
- network, transaction and consensus.

Along with this, Scorex also promises a very natural support for
more complex linking data structures, other than the conventional
blockchain like a Directed Acyclic Graph of blocks (SPECTRE by
Sompolinsky, Lewenberg and Zohar 2016) or a Graph of
cross-verifying transactions (Blockchain-Free Cryptocurrencies by
Boyen, Carr and Haines 2016).

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 12 / 24



Software Testing Property-based Testing

Property-based testing of Blockchain systems II

We have chosen Scorex framework by IOHK, which promises a more
intuitive partitioning between the different component protocols like
- network, transaction and consensus.

Along with this, Scorex also promises a very natural support for
more complex linking data structures, other than the conventional
blockchain like a Directed Acyclic Graph of blocks (SPECTRE by
Sompolinsky, Lewenberg and Zohar 2016) or a Graph of
cross-verifying transactions (Blockchain-Free Cryptocurrencies by
Boyen, Carr and Haines 2016).

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 12 / 24



Scorex Framework

Scorex: Introduction

In Scorex, a client’s local view of the system is divided into - history,
minimal state, vault, memory pool.

history - It is an append-only registry for persistent modifiers
(analogous to a block in Bitcoin), which must have a unique identifier
to query their existence and must point to at least one parent, so that
an ordering can be defined on history. A persistent modifier may or
may not contain transactions.
minimal state - It is a data structure which tells if a persistent
modifier is valid at a particular point in time, such that all the nodes
in the network having the same history, tell the same answer. If all
nodes in the network agree on a historic state S0, then if we apply the
same sequence of modifiers, we get to the same state Sk . Once nodes
have arrived at this state, they can tell if a modifier mk+1 is valid
w.r.t to Sk or not. For example, the state Sk can dictate the current
money that an account holds and can be used to see if a new
modifier which encapsulates transactions is valid or not.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 13 / 24



Scorex Framework

Scorex: Introduction

In Scorex, a client’s local view of the system is divided into - history,
minimal state, vault, memory pool.

history - It is an append-only registry for persistent modifiers
(analogous to a block in Bitcoin), which must have a unique identifier
to query their existence and must point to at least one parent, so that
an ordering can be defined on history. A persistent modifier may or
may not contain transactions.

minimal state - It is a data structure which tells if a persistent
modifier is valid at a particular point in time, such that all the nodes
in the network having the same history, tell the same answer. If all
nodes in the network agree on a historic state S0, then if we apply the
same sequence of modifiers, we get to the same state Sk . Once nodes
have arrived at this state, they can tell if a modifier mk+1 is valid
w.r.t to Sk or not. For example, the state Sk can dictate the current
money that an account holds and can be used to see if a new
modifier which encapsulates transactions is valid or not.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 13 / 24



Scorex Framework

Scorex: Introduction

In Scorex, a client’s local view of the system is divided into - history,
minimal state, vault, memory pool.

history - It is an append-only registry for persistent modifiers
(analogous to a block in Bitcoin), which must have a unique identifier
to query their existence and must point to at least one parent, so that
an ordering can be defined on history. A persistent modifier may or
may not contain transactions.
minimal state - It is a data structure which tells if a persistent
modifier is valid at a particular point in time, such that all the nodes
in the network having the same history, tell the same answer. If all
nodes in the network agree on a historic state S0, then if we apply the
same sequence of modifiers, we get to the same state Sk . Once nodes
have arrived at this state, they can tell if a modifier mk+1 is valid
w.r.t to Sk or not. For example, the state Sk can dictate the current
money that an account holds and can be used to see if a new
modifier which encapsulates transactions is valid or not.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 13 / 24



Scorex Framework

Scorex: Introduction

Figure: Minimal state progression

vault - It contains some user/account specific information. It is
maintained by the user running the node and is updated by scanning
a persistent modifier, a transaction or at the time of a rollback.

memory pool - It is used to store unconfirmed transactions which will
be later added into a persistent modifier.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 14 / 24



Scorex Framework

Scorex: Introduction

Figure: Minimal state progression

vault - It contains some user/account specific information. It is
maintained by the user running the node and is updated by scanning
a persistent modifier, a transaction or at the time of a rollback.

memory pool - It is used to store unconfirmed transactions which will
be later added into a persistent modifier.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 14 / 24



Scorex Framework

Scorex: Introduction

Figure: Minimal state progression

vault - It contains some user/account specific information. It is
maintained by the user running the node and is updated by scanning
a persistent modifier, a transaction or at the time of a rollback.

memory pool - It is used to store unconfirmed transactions which will
be later added into a persistent modifier.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 14 / 24



Scorex Framework

Node view quadruple

A node view quadruple is - <history, minimal state, vault, memory
pool>.

A consensus protocol is run among the nodes so that they can form a
proper, global and consistent history view.

All updates to the node view quadruple should happen atomically to
maintain consistency and harmony.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 15 / 24



Scorex Framework

Node view quadruple

A node view quadruple is - <history, minimal state, vault, memory
pool>.

A consensus protocol is run among the nodes so that they can form a
proper, global and consistent history view.

All updates to the node view quadruple should happen atomically to
maintain consistency and harmony.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 15 / 24



Scorex Framework

Persistent modifiers

In Scorex, valid persistent modifiers are divided into 2 types -

Syntactically valid - which are valid according to the history. For
example, in Bitcoin, a block is syntactically valid if its header is
correct and also contains a correct proof-of-work. But, it can still
have incorrect or faulty transactions which are taken care of by
stateful semantic validity (done by minimal state).

Semantically valid - which are valid according to the current minimal
state instance. For example, in Bitcoin, a block is semantically valid if
it contains all correct transactions, i.e. the senders should have more
money in their account than they intend to send and the senders and
receivers should have valid and active accounts.

A persistent modifier is called totally valid, if it is both semantically valid
and syntactically valid.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 16 / 24



Scorex Framework

Persistent modifiers

In Scorex, valid persistent modifiers are divided into 2 types -

Syntactically valid - which are valid according to the history. For
example, in Bitcoin, a block is syntactically valid if its header is
correct and also contains a correct proof-of-work. But, it can still
have incorrect or faulty transactions which are taken care of by
stateful semantic validity (done by minimal state).

Semantically valid - which are valid according to the current minimal
state instance. For example, in Bitcoin, a block is semantically valid if
it contains all correct transactions, i.e. the senders should have more
money in their account than they intend to send and the senders and
receivers should have valid and active accounts.

A persistent modifier is called totally valid, if it is both semantically valid
and syntactically valid.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 16 / 24



Our Approach Property-based Testing of Blockchain Clients

Property-based Testing of Blockchain Client

We have implemented 59 property tests in total.

Our tests require random object generators of - syntactically,
semantically and totally valid and invalid modifiers, transactions,
history instance, minimal state instance, vault instance and node view
holder instance.

These generators are then used by our tests to tell sanity of the
blockchain client implementation on certain ground examples which
we will see next.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 17 / 24



Our Approach Property-based Testing of Blockchain Clients

Property-based Testing of Blockchain Client

We have implemented 59 property tests in total.

Our tests require random object generators of - syntactically,
semantically and totally valid and invalid modifiers, transactions,
history instance, minimal state instance, vault instance and node view
holder instance.

These generators are then used by our tests to tell sanity of the
blockchain client implementation on certain ground examples which
we will see next.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 17 / 24



Our Approach Property-based Testing of Blockchain Clients

Property-based Testing of Blockchain Client

We have implemented 59 property tests in total.

Our tests require random object generators of - syntactically,
semantically and totally valid and invalid modifiers, transactions,
history instance, minimal state instance, vault instance and node view
holder instance.

These generators are then used by our tests to tell sanity of the
blockchain client implementation on certain ground examples which
we will see next.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 17 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Property tests

Of the 59 tests that we have implemented, we will go through a few of
them.
The tests are grouped into 5 classes - Memory pool tests, History tests,
Minimal state tests, Node view holder tests and Forking tests

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 18 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Memory pool tests

Memory pool should be able to store enough number of transactions.

Time to filter valid and invalid transactions from the memory pool
should be very fast. This test revealed that the implementation of
TwinsCoin cryptocurrency, which we used to run our tests on because
it is built on top of Scorex, was inefficient at filtering transactions
from memory pool.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 19 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Memory pool tests

Memory pool should be able to store enough number of transactions.

Time to filter valid and invalid transactions from the memory pool
should be very fast. This test revealed that the implementation of
TwinsCoin cryptocurrency, which we used to run our tests on because
it is built on top of Scorex, was inefficient at filtering transactions
from memory pool.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 19 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of History tests

A syntactically valid modifier should be applicable to history and after
that it should be available by its identifier when history is queried.

Modifier never appended to the history should not be available on
request from the history interface.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 20 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of History tests

A syntactically valid modifier should be applicable to history and after
that it should be available by its identifier when history is queried.

Modifier never appended to the history should not be available on
request from the history interface.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 20 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Minimal state tests

Application of a semantically valid modifier and then rollback should
lead to the same state. In this test, it is required to check that the
state after the rollback is exactly the same as the one before the
application of the modifier.

Application of a semantically valid modifier after a rollback should be
successful. This test ensures that after recovering from the rollback,
the system can continue its operation normally.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 21 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Minimal state tests

Application of a semantically valid modifier and then rollback should
lead to the same state. In this test, it is required to check that the
state after the rollback is exactly the same as the one before the
application of the modifier.

Application of a semantically valid modifier after a rollback should be
successful. This test ensures that after recovering from the rollback,
the system can continue its operation normally.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 21 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Node view holder tests

A totally valid persistent modifier should successfully update the
minimal state and the history instances. In this test, once the
modifier is applied to the node view holder, we check that history
indeed contains the modifier and that the version of minimal state is
equal to modifier’s identifier (which is a unique value).

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 22 / 24



Our Approach Property-based Testing of Blockchain Clients

Examples of Forking tests

Application of a longer sequence of totally valid modifiers should
replace the shorter sequence with both starting from a common
ancestor in the history. In this test, we first apply a shorter sequence
of valid modifiers and then starting from a common block, we try to
apply a longer sequence and see if the last block now is indeed the
last block of the longer sequence.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 23 / 24



Conclusion

Conclusion

We have developed a suite of 59 such property tests which should
hold true for almost all possible blockchain based clients.

For any blockchain client built over Scorex framework, our testing
suite can be easily used by supplying it with concrete implementations
of some generators.

Our list of property tests can also be used as a reference if someone
wants to develop a testing suite targeted to a specific client
implementation.

Alexander Chepurnoy, Mayank Rathee Checking Laws of the Blockchain with Property-Based TestingMarch 20 @ IWBOSE’18 24 / 24


	Introduction
	Motivation and contribution

	Software Testing
	Conventional Testing
	Property-based Testing

	Scorex
	Framework

	Our Approach
	Property-based Testing of Blockchain Clients

	Conclusion

